
D-Ai21 894 LFP USER'S MANUAL (LINCOLN FORTRAN PREPROCESSOR) /
VERSION 8291 FOR IBMADMD U MASSACHUSETTS INST OF
TECH LEXINGTON LINCOLN LAB J H COSGROVE ET AL.

UCASIFIED 91 SEP 82 TR-623 ESD-TR-82-883 F/G 9/2 NEhhhh NI E 2 shhhiIl
I IhhhhhhhhhhhhI

IIN



J&3.

av

1111_12 jjjj 12

,'oA

A 11.6

-
*

- I

I" !

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963,A

'N

4; "



u4

Tedil Rcpt62

r Iuh-

~~1 _

MASSAOFUtFIS 4SITU4TO ZMLOGY

R2 11. 02 043-



The work reported in this document was performed at Lincoln Laboratory, a center
for research operated by Massachusetts Institute of Technology. This work was
sponsored by the Department of the Army under Air Force Contract F19628-80.C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and conclusions contained in this document are those of the contractor and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the United States Government.

The Public Affairs Office has reviewed this report, and it is
releasable to the National Technical Information Service,
where it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas J. Alpert, Major, USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients
PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.



p.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

LFP USER'S MANUAL
(LINCOLN FORTRAN PREPROCESSOR)

VERSION 02.01 FOR IBM/AMDAHL SYSTEMS

J.H. COSGROVE

E. T. BAYLISS

Group 47

I

TECHNICAL REPORT 623

I SEPTEMBER 1982

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS

1 "- ' _' .. . .



ABSTRACT

LP (Lincoln Fortran Preprocessor) provides top-down control struc-

tures to FORTRAN and generates a self-documenting listing. LP is con-

patible with existing FORTRAN and also permits an internal procedure

capability.

Accession POP
NTIS GRA&I
DTIC TAB

". Uniannounced [

Jus tificatio

By

Distribution/

Availability Codes

! lAvail and/or
Dist Special

'i

tt



CONTENTS

Abstract iii

List of Illustrations ix

1.0 INTRODUCTION 1

2.0 RETENTION OF FORTRAN FEATURES 3

3.0 CORRELATION OF LFP AND FORTRAN SOURCE 4

4.0 STRUCTURED STATEMENTS 5

5.0 INDENTATION DESCRIPTION 8

6.0 CONTROL STRUCTURES 10

6.1 Decision Structures 10

6.1.1 IF 10

6.1.2 UNLESS 10

6.1.3 WHEN . . . ELSE 11

6.1.4 CONDITIONAL 12

6.1.5 SELECT 14

6.2 Loop Structures 15

6.2.1 DO 15

6.2.2 WHILE 16

6.2.3 REPEAT WHILE 16

6.2.4 UNTIL 17

6.2.5 REPEAT UNTIL 18

6.3 Control Structure Summary Sheet 19

7.0 INTERNAL PROCEDURES 20

V



8.0 CONTROL STATEMENTS 24

8.1 Listing Format Controls 25

8.1.1 Comment delimiter COMMENT 25

8.1.2 Control Character CONTROL 26

8.1.3 Double Spacing DS 26

8.1.4 Heading HEADING 26

8.1.5 Statement Numbering LABEL 27

8.1.6 Left Adjust LADJ 29

8.1.7 #Lines/Page LINE 29

8.1.8 Listing Control LIST 29

8.1.9 No Left Adjust NOLADJ 29

8.1.10 No Listing NOLIST 30

8.1.11 Page Eject PAGE 30

8.1.12 Single Spacing SS 30

8.1.13 Triple Spacing TS 30

8.1.14 Listing Width WIDTH 30

8.2 Inclusion of External Files 31

8.2.1 Include Command INCLUDE 31

8.2.2 Include Expansion INCEXP 32

8.3 Control Statement Summary 33

8.4 Control Statement Example - Typical Program Setup 34

9.0 COMMENTS 35

10.0 RESTRICTIONS AND CONVENTIONS 36

11.0 EXAMPLE OF LFP LISTING 39

vi



I

12.0 ERRORS 44

12.1 Syntax Errors 44

12.2 Context Errors 45

12.3 Undetected Errors 46

S 12.4 Control Card Errors 48

13.0 PROCEDURE FOR USAGE ON CKS - EMC LPG 49

14.0 PROGRAMMERS' GUIDE TO IFP 52

14.1 Subroutine Description 52

14.2 Installation of a New LIP Version 57K 14.2.1 Bootstrapping LFP 57

14.2.2 Installation parameter defaults 57

14.2.2.1 Number of print lines/page 57

14.2.2.2 Number of columns/page (width) 57

14.2.2.3 Default &eading 57

14.2.2.4 IFP Version Number 58

14.2.2.5 Default Control Character 58

14.2.2.6 Default Statement Labelling/Counting 58

14.2.2.7 I/0 Units 59

14.2.3 Comment Delimiter 59

15.0 MACRO PROCESSOR 60

15.1 Description 60

15.2 Procedure for Using MACRO on CHS 65

16.0 VARIABLE CROSS REFERENCE PROGRAM-XREF 66

vii



ACKNOWILEDGMENTS 69

BILIOGRAPHY 69

APPENDIX A. Control Structure Swinmry Sheet 70

B. Control Statement Suinary Sheet 71

viii



LIST OF ILLUSTRATIONS

1-1 LFP Preprocessor 
2

7-1 Internal procedure example 22

11-1 LFP listing of user's program 40

11-2 User's source program 41

11-3 FORTRAN listing of user's program 42

11-4 Variable cross reference listing 43

13-1 LPG Exec Structure 51

15-1 MACRO Processor Test Examples 63

15-2 Results of MACRO Processor Test Examples 64

16-1 Cross Reference Symbol Codes 68

ix



10INTRODUCTION

The Lincoln Fortran Preprocessor (LFP) (Fig. 1-1>4was constructed to

facilitate structured programming by extending FORTRAN to include the most

useful top down control structures. The choice of FORTRAN for a target

language was dictated by its being the only higher level language

available on many mini-computers. This work was motivated by a desire to

make top-down structured programming tools available for the development

of FORTRAN software.

LFP is an upward compatible extension of FORTRAN which provides five

new top down decision structures, five additional loop structures and an

internal procedure capability. In addition to structured control, LFP

provides a neat, automatically-formatted, structured listing. The ease of

program construction and clarity of program documentation are greatly

enhanced thus reducing the clerical detail and the likelihood of

programing in bugs.

* At Lincoln Laborato LFP is implemented on an Amdahl 470 with the

CP/CMS operating system, on a Modcomp 4 under MAX 4-rev D operating system

and on a PDP 11.

1'

:i1



USER SOURCE
PROGRAM IN LFP

INCLUDE

FILES~SECTION 8.2

PROCESS LFP

CONTROL
STATEMENTS

SECTION 8

PROCESS LFP
COMMENT FIELDS LFP DIAGNOSTICS (SECTION 12)

SECTION 9

PROCESS LFP
CONSTRUCTS
SECTION 6.7

LFP SOURCE PROGRAM

LISTING IN FORTRAN

Fig. 1-1. LFP preprocessor.

r2



2.0 RETENTION OF FORTRAN FEATURES

The LFP translator examines each statement in the LFP program to see

if it is an extended statement (a statement valid in LFP but not in

FORTRAN). If it is recognized as an extended statement, the translator

generates the corresponding FORTRAN statements. If, however, the state-

ment is not recognized as an extended statement, the translator assumes it

must be a FORTRAN statement and passes it through unaltered. Thus the LFP

system does not restrict the use of FORTRAN statements, it simply provides

a set of additional statements which may be used. In particular, GO TOs,

arithmetic IFs, CALLs, arithmetic statement functions, and any other

FORTRAN statements, compiler dependent or otherwise, may be used in LFP

programs.

3



3.0 CORRELATION OF LFP AND FORTRAN SOURCE

A basic flaw in most FORTRAN preprocessors' output is the inability

to correlate the preprocessor source listing with compiler syntax or run-

time errors. This usually forces the user to list the FORTRAN source that

was generated by the preprocessor and to attempt to make sense out of the

generally unreadable FORTRAN.

The-philosophy inherent in the LFP design was simple: Let LFP work

in the same numbering system as the FORTRAN compiler, since all compiler

errors or execution errors refer to this numbering system. However, not

all compilers number the statements the same way. IBM FORTRAN G and H

compilers number every statement except comment and continuation lines

while CDC and MODCOMP compilers number every statement. The LFP solution

was to allow the user to choose either type of statement numbering.

The statement identification field (line tag) that is present in

columns 73 to 80 of the user's source program, if one is present, may at

the option of the user be printed on the LFP listing along with the

statement. The FORTRAN source generated by LFP may also contain this sta-

tement identifier.

It is possible to specify exactly what type of line numbering scheme

is to be used by LFP with a LABEL control statement. (See Section 8.1.5.)

A sample of a source program processed by LFP along with the compiler

listing output may be found in Section 11.

-g



-i

4.0 STRUCTURED STATEMENTS

A basic notion of LFP is that of the structured statement which con-

sists of a control phrase and its scope. FORTRAN has two structured

statements, the logical IF and the DO. The following examples illustrate

this terminology:

structured statement

control phrase scope

keyword specification

IF (X.bQ.Y) U=V+W

keyword specification

DO 30 -1M control phrase

A(I) = B(I)+C structured

L(I) I-K(I) scope statement
30 CONTINUE

Note that each structured statement consists of a control phrase which

controls the execution of a set of one or more statements (its scope).

Each control phrase consists of a keyword plus some additional infor-

mation called the specification. A statement which does not consist of a

control phrase and a scope is said to be a simple statement. Examples of

simple statements are assignment statements, subroutine CALLs, arithmetic

IFs, and GO TOs.



The problem with the Fortran logical IF statement is that its scope

may contain only a single simple statement. This restriction is elimi-

nated in the case of the DO, but at the cost of clerical detail (having to

stop thinking about the problem while a statement number is invented).

3 In LFP there is a uniform convention for writing control phrases and

indicating their scopes. To write a structured statement, the keyword is

placed on a line beginning in column 7 followed by its specification

enclosed in parentheses. The remainder of the line is left blank. The

statements comprising the scope are placed on successive lines. The end

of the scope is indicated by a FIN statement. This creates a multi-line

structured statement. Examples of multi-line structured statements:

IF (X.EQ.Y)
U-V+WLR-S+T

FIN

DO (I - iN)
A(I) - B(I)+CL IC - C*2.14-3.14
FIN

Note: The statement number has been eliminated from the DO specification
since it is no longer necessary, the end of the loop being specified by
the FIN.

Nesting of structured statements is permitted to any depth.

Example of nested structured statements:

IF (X.EQ.Y)
U=-V+W

DO (I - 1, N)
A(I) - B(I)+CLc - C*2.14-3.14

LFIN
R - S+T

"FIN

6



When the scope of a control phrase consists of a single simple

I

statement, it may be placed on the same line as the control phrase and the

FIN may be dispensed with. This creates a one-line structured statement.

Examples of one-line structured statements:

IF (X.EQ.Y) U -V+W

DO (I - 1,N) A(I) - B(I)+C

Since each control phrase must begin on a new line, it is not

possible to have a one-line structured statement whose scope consists of a

structured statement:

Example of invalid construction:

IF (X.EQ.Y) DO (I - 1,N) A(I) - B(I)+C

To achieve the effect desired above, the IF must be written in a multi-

line form.

Example of valid construction:

IF (X.EQ.Y)

DO (I - 1,N) A(I) -B()+C

I"I

In addition to the IF and DO, U P provides several useful structured

statements not available in FORTRAN. After a brief excursion into the

subject of indentation, we will present these additional structures.

7



5.0 INDENTATION DESCRIPTION

In the examples of multi-line structured statements above, the state-

ments in the scope were indented and an "L" shaped line was drawn con-

necting the keyword of the control phrase to the matching FIN. The

resulting graphic effect helps to reveal the structure of the program.

The rules for using indentation and FINs are quite simple and uniform.

The control phrase of a multi-line structured statement always causes

indentation of the statements that follow its scope. Nothing else causes

indentation. A level of indentation (i.e., a scope) can only be terminated

with a FIN.

When writing an LP program on paper, the programmer should adopt the

indentation and line drawing conventions shown below. When preparing a

LIP source program in machine readable form, however, each statement

should begin in column 7. When the LFP translator produces the listing,

it will reintroduce the correct indentation and produce the corresponding

lines. If the programmer attempts to introduce his own indentation with

the use of leading blanks, the program will be translated correctly, but

the resulting listing will be Improperly indented. The source may be left

adjusted to column 7 before processing by the use of the LADJ control

card. See Section 8.1.6.

Example of indentation:

1. Program as written on paper by programmer:

V a V4-W
De ( = I, W

R a S N rFIN8



I

2. Program as entered into computer:

IF (X.EQ.Y)

DO (I- 1,N)
A(I) = B(I)+C
C - C'2. 14-3. 14
FIN
R - S+T
FIN

3. Program as listed by LFP translator:

IF (X.WQ.Y)
. U=V+W
. DO (I - 1,N)
• . A(I) - B(I)+C
* • C - C*2.14-3.14

.FIN
* R =S+T

.FIN

The correctly indented listing is a tremendous aid in reading and

working with programs. Except for the dots and spaces used for

indentation, the lines are listed exactly as they appear in the source

program. That is, the internal spacing of columns 7-72 is preserved.

There is seldom any need to refer to a straight listing of the unindented

source.

9



6.0 CONTROL STRUCTURES

The complete set of control structures provided by LFP is described

in the following subsections together with their corresponding flow

charts. The symbol C is used to indicate a logical expression. The sym-

bol S is used to indicate a scope of one or more statements. Some

statements, as indicated, do not have a one-line construction.

A convenient summary of the information in this chapter may be found

at the end of this section and in Appendix A.

6.1 Decision Structures

cution of their scopes on the basis of a logical expression or test.

6.1.1 IF

Description: The IF statement causes a logical expression to be

evaluated. If the value is true, the scope is executed once and control

passes to the next statement. If the value is false, control passes

directly to the next statement without execution of the scope.

General Form:

IF (C) Flow Chart:

Examples:

IF (X.EQ.Y) U -V+W

IF (T.GT.O.AND.S.LT.R)
. 1 1+1 PA.E
. Z-0.1
.FIN

6.1.2 UNLESS

Description: "UNLESS (,)" is functionally equivalent to

"IF(.NOT.(Z))", but is more convenient in some contexts.

10



General Form: Flow Chart:

IfELESS ) $

Examples:

UNLESS (X.NE.Y) U -V+W

UNLESS (T.LE.O.OR.S.GE.R)
1 11+1
Z 0-.1

.. FIN

6.1.3 WHEN ... ELSE

Description: The WHEN ... ELSE statements c!;rr~4:P-iLad to the IF ... THEN. .ELSE

statement of Algol, PL/l, Pascal, etc. In LFP, both the WHEN and the ELSE

act as structured statements although only the WHEN has a specification.

The ELSE statement must immediately follow the scope of the WHEN. The

specifier of the WHEN is evaluated and exactly one of the two scopes is

executed. The scope of the MRN statement is executed If the expression

is true and the scope of the ELSE statement is executed if the expression

is false.* In either case, control then passes to the next statement

following the ELSE scope.

General Form:FlwC r:

4Examples:TR

WHEN (X.EQ.Y) U - V+W S
ELSE U - V-W FL

WHEN (X.EQ.Y)
.U- v+W
.T -T+1.5

ELSE U - V-W______

... 
FIN1



WHEN (X.EQ.Y) U - V+W
ELSE-v-v

T - T+1.5
... .• • .FIN

Note: WHEN and ELSE always exist as a pair of statements, never
separately. Either the WHEN or the ELSE or both my assume the
multi-line form. ELSE is considered to be a control phrase, henne
it cannot be placed on the same line as the WHEN. Thus "WHEN )

-ELSE " is not valid.

6.1.4 CONDITIONAL

Description: The CONDITIONAL statement is based on the LISP

K conditional. A list of logical expressions is evaluated one by one until

the first expression to be true is encountered. The scope corresponding

to that expression is executed, and control then passes to the first sta-

tement following the CONDITIONAL. If all expressions are false, no scope

is executed. (See, however, the note about OTHERWISE below.)

12

1-



General Form:
Flow Chart:

CMuITISAL
* 4)d S

FAS* (l. S
7 ... FIN

Examples:

V FALSE

CONDITIONAL
. (X.LT-5.O) U - U+W
. (X.LEol.O) U - U+W+Z

o (X.LE.lO.5) U - UZT
_.FIN fXS

CONDITIONAL
. (A.EQ.B) Z -1.0

. (A.LE.C)
*. Y -2.0
*. Z -3.4
*...FIN

. (A.GT.C.AND.A.LT.B) Z -6.2

. (OTHERWISE) Z - 0.0
..FIN

Notes: The CONDITIONAL itself does not possess a one-line form. However,
each "(4g) So. " is treated as a structured statement and may be in one-
line or multi-line form.

The reserved word OTHERWISE represents a catchall condition. That
is "(OTHERWISE)S." Is equivalent to "(.TRJE .)Sj" in a CONDITIONAL statement.

13



o .-.

6.1.5 SELECT

Description: The SELECT statement is similar to the CONDITIONAL

but is more specialized. It allows an expression to be tested for

equality with each expression in a list of expressions. When the first

l matching expression is encountered, a corresponding scope is executed and

the SELECT statement terminates. In the description below,1,,..., s

represent arbitrary but compatible expressions. Any type of expression

(integer, real, complex,...) is allowed as long as the underlying Fortran

system allows such expressions to be compared with an EQ. OR .NE. operator.

General Form: Flow Chart:

SELECT (4)

* S ,

* I -

Example:

SELECT (OPCODE(PC))
. (JUMP) PC - AD
. (ADD)

*. A - AB
* . PC - PC+l

. ...FIN
. (SKIP) PC - PC+2 PALE
. (STOP) CALL STOPCD
.. .FIN

Notes: As in the case of CONDITIONAL, at most one of the $j; will be
executed.

The catchall OTHERWISE may also be used in a SELECT statement.
Thus "(OTHERWISE)S " is equivalent to "(e)S " within a "SELECT
( .)" statement.

14



The expression is reevaluated for each comparison in the list,
thus lengthy, time consuming, or irreproducable expressions should
be precomputed, assigned to a variable, and the variable used in
the specification portion of the SELECT statement.

6.2 LOOP Structures

The structured statements described below all have a scope which is

executed a variable number of times depending on specified conditions.

Of the five loops presented, the most useful are the DO, WHILE, AND

REPEAT UNTIL loops. To avoid confusion, the REPEAT WHILE and UNTIL loops

should be ignored initially.

6.2.1 DO

Description: The LFPs DO loop is functionally identical to the

Fortran DO loop. The only differences are syntactic. In the LFP DO loop,

the statement number is omitted from the DO statement, the incrementation

parameters are enclosed in parentheses, and the scope is indicated by

either the one line or multi-line convention. Since the semantics of the

Fortran DO statement vary from one Fortran compiler to another, a

flowchart cannot be given. The symbol X represents any legal incremen-

tation specification.

General Form

Do(I) S
Examples:

DO (I - 1,N) A(I) -0.0

DO (J - 3,K,3)
• B(J) - B(J-I)*B(J'2)

* C(J) - SIN(B(J))
.FIN

15



4

6.2.2 WHILE

'I Description: The WHILE loop causes its scope to be repeatedly

executed while a specified condition is true. The condition is checked

prior to the first execution of the scope, thus if the condition is ini-

tially false the scope will not be executed at all.
i Flow Chart :

[i General Form:

MWH1LE (C).S5

Examples: FALSE

: WHILE (X.LT.A(I)) I ,, T+1

MRE
WHILE (P.NE.o)
. VAL(P) - VAL(P)-Il
. P - LINK(P)
..FIN

6.2.3 REPEAT WHILE

Description: By using the REPEAT verb, the test is logically

moved to the end of the loop. The REPEAT WHILE loop caused its scope to

be repeatedly executed while a specified condition remains true. The con-

dition is not checked until after the first execution of the scope. Thus

the scope will always be executed at least once and the condition indica-

tes under what circumstances the scope is to be repeated.

Note: "REPEAT WHILE (C)" is functionally equivalent to "REPEAT UNTIL

(.NOT.(C))".

16

1



General Form: Flow Chart:

REPEAT WHILE(C) S.

Examples:

REPEAT WHILE(N.EQ.M(I)) I - I+1 S
REPEAT WHILE (LINK(Q).NE.O)
. R - LINK(Q)
. LINK(Q) ME

Q=R

..FIN FALSE

6.2.4 UNTIL

Description: The UNTIL loop causes its scope to be repeatedly

executed until a specified condition becomes true. The condition is

checked prior to the first execution of the scope, thus if the condition

is initially true, the scope will not be executed at all. Note that

"UNTIL (,C)" is functionally equivalent to "WHILE (.NOT.(4C)".

General Form: FlOw Chart:

UNTIL (L)

Examples:

UNTIL (X.EQ.A(I)) I - +R

UNTIL (P.EQ.O)
" VAL(P) - VAL(P)+l FALSE
. P - LINK(P)
... .FINS

17



I

6.2.5 REPEAT UNTIL

Description: By using the REPEAT verb, the test is logically

moved to the end of the loop. The REPEAT UNTIL loop causes Its scope to

be repeatedly executed until a specified condition becomes true. The con-

dition is not checked until after the first execution of the scope. Thus

the scope will always be executed at least once and the condition indica-

tes under what circumstances the repetition of the scope is to be terminated.

Flow Chart:
General Form:

MEPEATUNTIL (C) S
Examples:

REPEAT UNTIL (N.EQ.M(T)) I - 1+1

REPEAT UNTIL (LINK(Q).EQ.0) S
. R - LINK(Q)
.LINK(Q) -P

* P-Q q
Q -R FALSE]*: • .FIN 4

... FI

TRUE

18

,o



6.*3 Control Structure Summary Sheet

IF (C) S (IESCC uCcS

C TRIM FALSE TWA

P ALSI

SELECT (4c)
4*(L) St '

53 ~ T UM--ACTIN

FALSE panLM

3M5U1NM PLACE A PEfIU SwO. as
-- MatL EXIT sVa~aSnT omm

FALSE op US PinT TO sSe1f.

Net: Ol~TMISE CAE:us s~
A CATCHAL CO6StTIO an

AND SELECT STATE3?S.

FALSESS FAS *m L081CAL IONus

WEATUNTIL (f.) OU MEETILE (fC) S UNIL (,C) S ILE (,C) S

s STMg FALSE

FALSE TUK

TAS FALSE UES

19



7.0 INTERNAL PROCEDURES

In LP a sequence of statements may be declared an internal procedure

and given a name. The procedure may then be invoked from any point in the

program by simply giving its name.

Procedure names may be any string of letters, digits, and hyphens

(i.e., minus signs) beginning with a letter and containing at least one

hyphen. Imbedded blanks are not allowed. The only restriction on the

length of a name is that it may not be continued onto a second line.

Examples of valid internal procedure names:

INITIALIZE -ARRAYS
GIVE -WARNING
SORT -INTO -DESENDING -ORDER
INITIATE -PHASE -3

A procedure declaration consists of the keyword "To" followed by the

procedure name and its scope. The set of statements comprising the proce-

dure is called its scope. If the scope consists of a single simple state-

ment it may be placed on the same line as the "TO" and procedure name,

otherwise the statements of the scope are placed on the following lines

and terminated with a FIN statement. These rules are analogous with the

rules for forming the scope of a structured statement.

General Form of procedure declaration:

TO procedure-name

20



Examples of procedure declarations:

TO RESET-POINTER P - 0

TO DO-NOTHING

TO SUMMARIZE-FILE
. INITIALIZE-SUMMARY
. OPEN-FILE
• REPEAT UNTIL (EOF)

.• ATTEMPT-TO-READ-RECORD

.• WHEN (EOF) CLOSE-FILE
. . ELSE UPDATE-SUMMARY
* ... FIN
* OUTPUT-SUMMARY
...FIN

An internal procedure reference is a procedure name appearing where an

executable statement would be expected. In fact, an internal procedure

reference is an executable simple statement and thus may be used in the

scope of a structured statement as in the last example above. When

control reaches a procedure reference during execution of a LFP program, a

return address is saved and control is transferred to the first statement

in the scope of the procedure. When control reaches the end of the scope,

control is transferred back to the statement logically following the pro-

cedure reference.

A typical LFP program or subprogram consists of a sequence of Fortran

declarations: (e.g. INTEGER, DIMENSION, COMMON, etc.) followed by a

sequence of executable statements called the body of the program followed

by the LFP internal procedure declarations, if any, and finally the END

statement.

Here is a complete LFP program (Fig. 7-1) which illustrates the pla-

cement of the procedure declarations.

21



11/13/78 N.I.T. LINCOLN LABORATORY FORTRAN PEPROCESSOR LFP 02.01
10:07:33 PAGE I

ZVU 72 15OO0010
.; INTRATIVE PROGRAM FOR PDP-10 P000020

;TO COMPUTE THE SQUARE ROOT OF X. P1000030
;STOP WHEN X IS NEGATIVE. PRO00040

P1000050

00001 REAL X,SQRTZ PR00060
00002 REPEAT UNTIL ( X .LT. 0.0) P3000070
00004 READ-IN-A-VALU-OF-I PRO0000
00006 • IF (X .GZ. O.O);OLY WHEN I IS POSITIVE PO0090
00007 • • COtPUTE-SQT-OF-I PIOO0100
00009 • TYPE-OUT-TH-RESULT;BOTE X AND SQITX P1000110
00011 ... FIN PR00120
00012 ... FIN P1000130
00013 STOP;HALT EXECUTION PRO00140

00014 TO READ-IN-A-VALUE-OF-I PO00150
00015 . TYPE 10 P1000160
00016 10 • FORMAT(' I - ',$) PRO00170
00017 . ACCEPT 20.1 PROO0180
00018 20 . FOUMT();FRu FORMAT INPUT P100190
00019 ... FIN P1000200

00020 TO COSPUT-SQRT-OF-I SQRTI-SQRT(I) PROO0210

00023 TO TYPE-OUT-THE-ESULT P1000220
00024 . TYPE 30,XSQRTX PRO00230
00025 30 • FORMAT(' THE SQRT OF ',F7.2,f IS ',F7.2) P3000240
00026 ... FIN P1000250
00030 END PRO00260

PROCEDURE CROSS-RZEERENCE TABLE

00020 COMPUTEZ-SQRT-OF-X
00007

00014 READ-IN-A-VALUE-OF-X
00004

00023 TYPE-OUT-THE-RESULT
00009

NO DIAGNOSTICS

26 LFP LINES SCANNED, 30 FORTRAN STATEMENTS GENERATED

Fig. 7-1. Internal procedure example.

22



Notes concerning internal procedures:

1. All internal procedure declarations must be placed at the
end of the program Just prior to the END statement. The
appearance of the first "TO" statement terminates the body
of the program. The translator expects to see nothing but
procedure declarations from that point on.

2. The order of the declarations is not important. Alphabetical
by name is an excellent order for programs with a large
number of procedures.

3. Procedure declarations may not be nested. In other words.
the scope of a procedure may not contain a procedure
declaration. It may of course contain executable procedure
references.

4. Any procedure may contain references to any other procedures
(excluding itself).

5. Dynamic recursion of procedure referencing is not permitted.

6. All program variables within a main or subprogram are global
and are accessable to the statements in all procedures
declared within that same main or subprogram.

7. There is no formal mechanism for defining or passing parame-
ters to an Internal procedure. When parameter passing is
needed, the Fortran function or subroutine subprogram mecha-
nism may be used or the programmer may invent his own para-
meter passing methods using the global nature of variables
over internal procedures.

8. The LP translator separates procedure declarations on the
listing by dashed lines as shown in the preceding example.

9. Internal procedure references called from inside nested DO
Loops is not recommended.

23



8.0 CONTROL STATEMENTS

Statements which supply information to the LFP translator during pro-

cessing are called control statements. These statements, denoted by a

control character in column 1, allow user control over the format

(appearance) of the LFP listing and permit the inclusion of the contents

of other files in the source.

A control statement, in general, will contain 3 items:

control This is a percent sign (2) in column 1.
character This character may be changed by a

CONTROL control statement. See
section 8.1.2.

control This is a string from 1 to 8
word characters in length that denotes

the control card type and must not
contain imbedded blanks.

argument This is either a numeric or alpha-
betic string (optional for some
keywords).

The only requirement on the control statement format is that the

control word comes before the argument and that they are separated by at

least one blank. Otherwise, the control word and argument are typed in a

field-free format.

Each control word may be recognized from a subset of the complete

control word, e.g., the control word INCLUDE can be recognized by an I,

IN,..., or INCLUDE. The minimum recognition pattern is denoted by the

capital letters in each control word.

24



All statements will be listed in the LFP listing except those that

follow a NOLIST control. A subsequent LIST control statement will negate

the effect of a NOLIST.

Control statements can occur anywhere in the user's LFP source file or

in the included files.

8.1 Listing Format Controls

~ . The format control statements control the appearance of the LFP

listing such as page width, spacing and page length, etc.

8.1.1 Comment delimiter Z COMment char Default

This statement defines the comment field delimiter character,

which should not be part of the standard Fortran character set for obvious

reasons. A comment field may be placed on any LFP source statement

including control statements. The delimiter does not have to be separated

from the LFP statement by a blank.

Examples:

zCON $

% COMMENT ; $ change delimiter back to a ;

The first example changes the current comment delimiter to a $.

Example 2 then changes the delimiter back to a ; (the field "$ change

delimiter back to a ;" is treated as a comment).

25



8.1.2 Control character 2 Control chars Default %

This control statement allows the user to define a character or a

set of characters that will identify a control statement. Caution - Do

not use the character C or regular comments will be flagged as BAD CONTROL

CARDS.

Unrelated examples:

%C * ; change control character to a *
I CON +-AX
%CONTROL ;+

In example 2 any statement with a +, -, A, or X in column 1 is

treated as a control statement. In example 3 the control character is set

to , the field ";+" is an inline comment.

If the argument is not present the default control character is

assumed.

8.1.3 Double Spacing Z DS

This control statement will initiate double spacing on the LFP

listing. Errors are still single spaced. Double spacing is done by

carriage control.

8.1.4 Heading % Heading character strinj

This control statement defines a character string that will print

as heading information at the top of each output page of the LFP listing.

The string is not delimited by single quotes and may contain imbedded

blanks up to a length of 69 characters.

If the heading length is larger than the page width, the heading is

truncated on the right.

26

-----------------------------------------------



The default Heading is

M.I.T. LINCOLN LABORATORY FORTRAN PREPROCESSOR

Examples:

%H SUBROUTINE RENAME
ZHEADING SYSTEM RS2-TEST
%HEAD INS SIMULATION;MODEL 4

In the third example the field ";MODEL 4" is treated as a comment and

will not be part of the heading.

8.1.5 Statement Numbering % LABEL XYZ

The LABEL control statement determines the method of statement

numbering on the LFP listing. The user is presented with the following

choices:

I. FORTRAN line numbers. These are Internally generated by the
compiler and are affixed to the listing output to the left of
the statements. They are not to be confused with statement
labels (found in columns I - 5). FORTRAN line numbers are
sequential from card to card, however, some FORTRAN compilers,
e.g., IBM, do not number comments or continuations.

2. LFP line numbers. These are internally generated by LFP and
are sequential from statement to statement.

3. Line tags. These are the 8 column identification field found
in columns 73 - 80 of the input LFP statements.

In the LFP listing of a sample program in Section 11, the num-

bers to the left of the statements are FORTRAN line numbers while those on

the right side are line tags. These were chosen by the options available

for the XYZ argument field on the LABEL control statement.

27



Field Value Description

X 0 Increment by 1 the FORTRAN line number
for every line of FORTRAN generated.
This corresponds to most CDC and
HODCOMP compilers.

1Increment by 1 the FORTRAN line number
for every line of FORTRAN generated
except comments or continuations.
This is standard for IBM machines.
DEFAULT.

Y 0 Put LFP line numbers to the left of
the source statements.

Put the FORTRAN line numbers as deter-
mined by the field X to the left of
the source. DEFAULT.

Z 0 Put LYP line numbers to the right of
the source.

Put the 8 column line tag to the right
of the source. DEFAULT.

2 Have no field to the right of the source.

The sample LFP listing in Section 11 was prepared with the default

LABEL control statement.

Examples:

%LABEL 111 ; This is the default
ZILABL ; This resets the default to XYZ-111
%LABEL 12 ; XmO,Y=I,Z=2

28



8.1.6 Left Adjust % LAdj

This control statement will left adjust the input source to column

7, i.e., all blanks from column 7 to the first noublank character of each

source statement will be removed. This is particularly useful if the

source had been indented on input, because LFP does its own indenting.

8.1.7 # Lines/Page % Line N

This statement specifies the number of printed lines on each page

of the LFP listing which includes 3 lines for the heading. Reasonable

values for N are between 50 and 60 for a line printer. For a terminal

with a roll of paper, N could be made very large which would prevent the

top of page headers from being written. The default is 60 lines/page.

Examples:

%L 55
% LINE 60

8.1.8 Listing Control % LIST

This control statement generates the LFP listing. This may be

used in conjunction with the NOLIST control to selectively list portions

of the program. Initially the LIST control is in effect.

8.1.9 No Left Adjust % NOLAdJ

This control negates the effect of the LADJ control, i.e., do not

left adjust the LP source. NOLADJ is the default.

29



8.1.10 No Listing Z NOList

The control turns off the generation of the LP listing. Only the

presence of a LIST card will turn the listing back on. A NOLIST statement

is printed except if it is the first record of the source file being

processed.

8.1.11 Page Eject % Page N

This control statement forces a page eject on the LP listing if N

is zero or missing. If N is positive, this statement acts as a con-

ditional page eject to keep blocks of the listing contiguous. If there

are fever than N lines left on the page, then eject a page.

If the LFP listing is double or triple spaced (see DS and TS

controls) the N means double or triple spaced lines.

Examples:

%P
Z Page 20

8.1.12 Single Spacing % SS

This control will single space the LP listing, which is the

default spacing.

8.1.13 Triple Spacing % TS

This control statement will triple space the LFP listing.

Note: This is done by carriage control, not inserting blank lines.

8.1.14 Listing Width Z Width N

The width control statement specifies the page width of the LP

listing in characters. This affects all output - including page headers

and the procedure cross reference table.

30



N will usually range from 72 to 133 with 1 column being reserved for

carriage control. See the sample LFP listing in Section 11 with a column

width of 78. 17 coiumns are dedicated for statement numbering and

labelling leaving N-17 columns for the indented source statements. The

default page width is 110 columns.

Examples:

%W 133
%WIDTH 80; SET WIDTH TO 80 COLUMNS

8.2 Inclusion of External Files

8.2.1 INCLUDE Command % Include FILENAME FILETYPE

The INCLUDE control statement allows the user to include in the

source program the contents of other files. This is particularly effec-

tive in the usage of common blocks.

For example a series of common definitions are put in a file named

COMMON. The user's source program would contain a %INCLUDE COMMON state-

ment to include the common definitions. Included files may contain nested

%INCLUDE statements up to a level of 40, however, recursive includes are

not allowed.

The filename must be a legitimate CMS filename. The default filetype

is LFP.

Examples:

%I CBLOCK.
% INCLUDE ABLOC
Z INCLUDE DEFIN FORTRAN

31



b7

If the filename is missing on the INCLUDE card or if the file does

not exist, the statement is ignored with diagnostic being issued to the

LFP listing and the terminal.

8.2.2 Include Expansion Z INCExp N

This control statement controls the expansion of the %INCLUDE

file. If N is 1 the file is included, if N is 0 the file is not included

in either the LFP listing or the generated Fortran. The default for N

is 1.

Examples:

ZINCEXP 0
Z INCE 1

32



8.3 Cotrol Statement Swummrv-I Section

icawent x ..

Definae the commnt deliaitec chatacter 1. Default to

%Control 1 8.1.2

Define the control character 1. Default is 2

%DS 6.1.3

Double space the L?? Lisn

IUeadlng CNARACU SfTRING 6.1.4

Define the heading CNARCTI SUN to go at theto

of each page of the LI? listieg.

Unclud. ?ILBNAKZ 8.2.1

Include the contests of the file - flLSNMlU rtLgTTM in
the source file. The filetpe meet be 1.1

ZINCRUP v 8.2.2

Coetrole the Incluuioe of a file on the INCLOD card.
if 9 ia 0 the file to -et teslued. If U ia I the
file to Included. Default *1

LISZL ITS 6.1.5

1 0 odcemp FORTRAN lit*nmbering:

I Amdahl FORTRAN l" 'Lotri (default)

T 0 If? lin members at left of listing
I FORTRAN Ilse numbers at left of listing (default)

2 0 L"Ilse numbers at right of listing
1 Lisa tat@ at right of Uaties (default)
2 bleahe

ZLADJ 8.1.0

Left &&just the source, to caom 7, rose"n blanks.

suins x 8.1.7

Pint X linsa par page. Default - GO.

guset 6.1.6

ftlst LI? Listing. Default.

ZIWTedj 6.1.9

Do not left adjust emucee to column I (default).

MuO~st 6.1.*10

Turn of f LU? liating.

ZVage x 8.1.11

gjact a page if 30 or N 1. missing.
Eject a pase If there are less than 9 lines left on a page.

us5 6.1.12

Single space LI? listing (default).

ITS 8.1.13

Triple apace LI? listing.

%Width N S. .14

Width of LI? output liating isk characters.

Default - 110

33



8.4 Control Statement Example-.Typical Program Setup.

The following control statements at the beginning of each source

program generate a listing that greatly facilitates referencing.

ZNOLIST
%HEADING SUBROUTINE NAME
%PAGE
%LIST

SUBROUTINE NAME

END

ZNOLIST
%HEADING SUBROUTINE N2

* %PAGE
%LIST

SUBROUTINE 12

END

34



9.0 COMMENTS

Comments in LFP are recognized by the presence of a specified comment

delimiter in any column or by the traditional method of the character "C"

in column 1. All characters to the right of and including the delimiter

are considered the comment field.

Comments can be isolated, that is, the source statement is only a

comment, or they can be inline, meaning a statement and a comment field

may be present on the same source line.

All source lines of LFP including control statements may contain

inline comments. There does not have to be a blank between the last

character of the statement and the comment delimiter.

Isolated comments are indented to the current LFP listing level if

columns 2-6 of the statement are blank. An inline comment is indented

only if the statement is Indented.

Inline comment fields are stripped off the input statements before

the Fortran output is produced. No comments are sent to the generated Fortran.

Examples:

C NORMAL COMMENT
C THIS COMMENT WILL NOT BE INDENTED

THE SEMICOLON IS THE DEFAULT DELIMETER
; THE DELIMETER MAY BE IN ANY COLUMN

A - SQRT(B*B+C*C); COMPUTE RADIUS OF CIRCLE
XCOMMENT $ ; CHANGE DELIMETER TO A $

DETERMINE-NEXT-EVENT$BY A TABLE LOOKUP

35



10.0 RESTRICTIONS AND CONVENTIONS

If LFP were implemented by a nice intelligent compiler this section

would be much shorter. Thus the LFP programmer must observe the following

restrictions.

1. LFP must invent many statement numbers in creating the FORTRAN
program. It does so by beginning with a large number (usually
99999) and generating successively smaller numbers as it needs
them. Do not use a number which will be generated by the
translator. A good rule of thumb is to avoid using 5 digit
statement numbers.

2. LFP must generate integer variable names. It does so by using
names of the form "Innnnn" when nnnnn is a 5 digit number
related to a generated statement number. Do not use variables
of the form Innnnn and avoid causing them to be declared other
than INTEGER. For example the declaration "IMPLICIT REAL (A-Z)"
leads to trouble. Try "IMPLICIT REAL (A-H, J-Z) instead.

3. The preprocessor does not recognize continuation lines in the
source file. Thus FORTRAN statements may be continued since
the statement and its continuations will be passed through the
preprocessor without alteration. (See chapter 2.) However, an
extended LFP statement which requires translation may not be
continued. The reasons one might wish to continue a LFP state-
ment are 1) It is a structured statement or procedure declara-
tion with a one statement scope too long to fit on a line, or 2)
it contains an excessively long specification portion or 3) both
of the above. Problem 1) can be avoided by going to the multi-
line form. Frequently problem 2) can be avoided when the speci-
fication is an expression (logical or otherwise) by assigning
the expression to a variable in a preceding statement and then
using the variable as the specification. Avoid continued IF
statements.

4. Blanks are meaningful separators in LFP statements: don't put
them in dumb places like the middle of identifiers or key words
and do use them to separate distinct words like REPEAT and UNTIL.

5. Let LFP indent the listing. Start all statements in col. 7 and
the listing will always reveal the true structure of the
program. (as understood by the preprocessor of course). The
control statement %LADJ allows for preindented source code.

36



6. As far as the preprocessor is concerned, FORMAT statements are
executable FORTRAN statements since it doesn't recognize them as
extended LFP statements. Thus, only place FORMAT statements
where an executable FORTRAN statement would be acceptable.
Don't put them between the end of a WHEN statement and the
beginning of an ELSE statement. Don't put them between proce-
dure declarations.

Incorrect Examples: Corrected Examples:

WHEN (FLAG) WRITE(3,30) WHEN (FLAG)
30 FORMAT(7H TITLE:) . WRITE(3,30)

ELSE LINE - LINE+l 30 • FORMAT(7H TITLE:)
...FIN
ELSE LINE - LINE+.

TO WRITE-HEADER TO WRITE-HEADER
. PAGE - PAGE+1 . PAGE - PAGE+l
. WRITE(3,40) HPAGE . WRITE(3,40) H, PAGE
...FIN 40 . FORMAT(7OAI,13)

40 FORMAT (70A1,13) ...FIN

7. The preprocessor recognizes extended LFP statements by the pro-
cess of scanning the first identifier on the line. If the iden-
tifier is one of the LFP keywords IF, WHEN, UNLESS, FIN, etc.,
the line is assumed to be a LFP statement and is treated as
such. Thus, the LFP keywords are reserved and may not be used
as variable names. In case of necessity, a variable name, say
WHEN, may be slipped past the preprocessor by embedding a blank
within it. Thus "WH EN" will look like "WH" followed by "EN" to
the preprocessor which is blank sensitive, but line "WHEN" to
the compiler which ignores blanks.

8. In scanning a parenthesized specification, the preprocessor scans
from left to right to find the parenthesis which matches the
initial left parenthesis of the specification. The preprocessor,
however, is ignorant of Fortran syntax including the concept of
Hollerith constants and will treat Hollerith parenthesis as syn-
tactic parenthesis. Thus, avoid placing Hollerith constants
containing unbalanced parenthesis within specifications. If
necessary, assign such constants to a variable, using a DATA or
assignment statement, and place the variable in the
specification.

37



I!

Incorrect Exmaple: Corrected Example:

IF (J.EQ.'(') LP - 1Ci.IF(J ,EQ.LP)

9. LFP will not supply the statements necessary to cause
appropriate termination of main and sub-programs. Thus it is
necessary to include the appropriate RETURN, STOP, or CALL EXIT

statement prior to the first internal procedure declaration.
Failure to do so will result in control entering the scope of

the first procedure after leaving the body of the program. Do
not place such statements between the procedure declarations and
the END statement.

10. LFP ignores blank lines and does not pass comments or blank
lines on to the compiler. Thus blank lines can be used for

program clarity without worry.

11. Some FORTRAN compilers allow branching in and out of DO
LOOPS-other compilers prohibit this. The usage of internal pro-
cedure references inside DO structures is not recommended.

38



11.0 EXAMPLE OF USP LISTING

I The user's program is named QDROOT USP which is listed in Fig. 11-2.

Figure 11-1 is the resulting LP listing. Note the correlation bet-

ween the line numbers on the left of the USP listing with the lines on the

Fortran compiler output (Figure 11-3). This is accomplished by the

LABEL control card (Section 8.1.5).

q.3

39



05/14/81 SUBROUTINE QDROOT SOLVE QUADRATIC FORMULA LFP 02.01
16:11:19 PAGE 1

%LIST QDR00050
00001 SUBROUTINE QDROOT(A,BC,X1,X2,IERR) QDRO0060

QDRO0070
00002 REAL*8 A,B,C,XI,X2,DISCRMTERMI,TERH2 QDRO0080

QDRO0090
;SOLVE QUADRATIC EQUATION .... A*X*X + B*X + C - 0 QDRO0100
;FOR Xl AND X2. QDRO0110
;IERR IS AN ERROR CODE QDR00120

-2 A AND B ARE O.O---NO ROOTS QDRO0130
-1 DISCRIMINANT < - O.0---IMAGINARY ROOTS QDRO0140

0 NORMAL RETURN---2 REAL ROOTS QDRO0150
; 1 HIGH ORDER COEFFICIENT A, IS ZERO QDRO0160

QDRO0170
00003 IERR-O QDRO0180
00004 WHEN (A ,NE. OODO) QDRO0190
00005 . DISCRM-B*B-4.ODO*A*C; CALCULATE THE DISCRIMINANT QDRO0200
00006 . WHEN (DISCRM ,LT. O.ODO) QDRO0210
00007 . • IERR--1; SET NEGATIVE DISCRIMINANT CODE QDRO0220
00008 . . X1-O.ODO QDRO0230

K 00009 . X2-O.ODO QDRO0240i:00010 .... FIN QDR00250

00011 • ELSE QDRO0260
00011 . , TERM1--B/(2.0DO*A) QDR00270
00012 . • TERM2-DSQRT(DISCR14)/(2.ODO*A) QDRO0280
00013 . . X1-TERM1+TERM2; CALCULATE ROOTS Xl and X2 QDRO0290
00014 . . X2-TERM1-TERN2 QDR00300
00015 .... FIN QDRO0310
00015 ...FIN QDRO0320
00016 ELSE; THE HIGH ORDER COEFFICIENT IS ZERO QDRO0330
00016 . WHEN (B.NE.O.ODO) QDR00340
00017 . • X1i-C/B QDRO0350
00018 . . X2-X1 QDRO0360
00019 . . IERR-1 QDR00370
00020 .... FIN; WHEN QDR00380
00021 . ELSE; A AND B ARE BOTH 0.0 QDR00390
00021 . . X1-O.ODO QDR00400
00022 . X2-O.ODO QDR00410
00023 . IERR--2 QDRO0420
00024 .... FIN; ELSE QDRO0430
00024 ...FIN QDRO0440
00025 RETURN QDRO0450
00026 END QDRO0460

NO DIAGNOSTICS
46 LFP LINES SCANNED, 26 FORTRAN STATEMENTS GENERATED

Fig. 11-1. LFP listing of user's program.

40



FILE: QDROOT LFP A 5/14/81 16:09 M.I.T. LINCOLN LABORATORY

ZNOLIST QDR00010
%HEAD SUBROUTINE QDROOT SOLVE QUADRATIC FORMULA QDRO0020
ZWIDTH 78 QDRO0030
%PAGE QDRO0040
%LIST QDRO0050

SUBROUTINE QDROOT(AB,CXl,X2,IERR) QDRO0060
QDRO0070

REAL*8 A,B,C,X1,X2,DISCRM,TERM1,TERM2 QDRO0080
QDRO0090

;SOLVE QUADRATIC EQUATION .... A*X*X + B*X + C - 0 QDROOIOO
;FOR Xl AND X2 QDRO0110
;IERR IS AN ERROR CODE QDRO0120

-2 A AND B ARE 0.0--NO ROOTS QDRO0130
-1 DISCRIMINANT < - 0.0 -- IMAGINARY ROOTS QDRO0140
0 NORMAL RETURN---2 REAL ROOTS QDRO0150
1 HIGH ORDER COEFFICIENT A, IS ZERO QDRO0160

QDRO0170
IERR-O QDR00180
WHEN (A .NE. O.ODO) QDRO0190
DISCRM-B*B-4.ODO*A*C; CALCULATE THE DISCRIMINANT QDRO0200
WHEN (DISCRM .LT. 0.0) QDR00210
IERR--l; SET NEGATIVE DISCRIMINANT CODE QDROO220
Xl-O ODO QDRO0230
X2-O.ODO QDRO0240
FIN QDRO0250
ELSE QDRO0260
TERM1--BI (2. ODO*A) QDRO0270
TERM2-DSQRT(DISCRM) / (2.ODO*A) QDRO0280
X1-TERMI+TERM2; CALCULATE ROOTS X1 AND X2 QDROO290
X2-TERMl-TERK2 QDROO300
FIN QDRO0310
FIN QDRO0320
ELSE; THE HIGH ORDER COEFFICIENT IS ZERO QDROO330
WHEN (B.NE.O.ODO) QDROO340
X-C/B QDRoo350
X2-X QDRO0360
IERR-1 QDRO0370
FIN; WHEN QDR00380
ELSE; A AND B ARE BOTH 0.0 QDROO390
Xl-0.ODO QDRO0400
X2-0.ODO QDRO0410
IERR--2 QDRO0420
FIN; ELSE QDRO0430
FIN QDROO440
RETURN QDROO4 50
END QDR00460

Fig. 11-2. User's source prograa.

41



FORTRAN IV G RELEASE 2.0 QDROOT DATE - 81134

0001 SUBROUTINE QDROOT(AB,C,X1,X2,IERR) QDRO0060
0002 REAL*8 A,B,C,XlX2,DISCRM,TERM1,TERM2 QDRO0080
0003 IERR-O QDRO0180
0004 IF(.NOT.(A .NE. O.ODO)) GO TO 99998 QDROOI O
0005 DISCRM=B*B-4.ODO*A*C QDRO0200
0006 IF(.NOT.(DISCRM .LT. 0.0)) GO TO 99996 QDR00210
0007 IERR--1 QDRO0220
0008 X1-O.0DO QDR00230
0009 X2-0.ODO QDRO0240
0010 GO TO 99997 QDRO0250
0011 99996 TERM1=-B/(2.ODO*A) QDRO0270
0012 TERM2-DSQRT(DISCRH)/(2.ODO*A) QDRO0280
0013 X1-TERM1+TERM2 QDRO0290
0014 X2-TERH1-TERM2 QDRO0300
0015 99997 GO TO 99999 QDRO0320
0016 99998 IF(.NOT.(B.NE.O.ODO)) GO TO 99994 QDRO0340
0017 Xl- -C/B QDR00350
0018 X2-Xl QDRO0360
0019 IERR-1 QDR00370
0020 GO TO 99995 QDR00380
0021 99994 XlO.ODO QDR00400
0022 X20-.0DO QDR00410
0023 IERR--2 QDR00420
0024 99995 CONTINUE QDR00440
0025 99999 RETURN QDR00450
0026 END QDRO0460

Fig. 11-3. FORTRAN listing of user's program.

!

42



05/14/81 SUBROUTINE QDROOT(AB,CXl,X2,IERR) XREF 02.02
16:12:20 PACE 1

SiBOL " " " " - - REFERENCES - -

99994 - 16 21*
99995 - 20 24*

99996 - 6 11*
99997 - 10 15*
99998 - 4 16*
99999 - 15 25*
A - 1AG 2RL 4 5 11 12
B - 1AG 2RL 5 11 16 17
C - 1AG 2RL 5 17
DISCRM - 2RL 5- 6 12
DSQRT - 12
IERI - lAG 3- 7w 19- 23-
QDROOT - ISN
RETURN - 25RE
TERM1 - 2RL 11- 13 14
TERH2 - 2RL 12- 13 14
Xl - lAG 2RL 8- 13- 17- 18 21-
X2 - lAG 2RL 9- 14- 18- 22-

THE FOLLOWING SYMBOLS UNDEFINED OR FUNCTION CALLS
DSQRT - 12

END OF XREF PROCESSING

Fig. 11-4. Variable cross reference listing.

43



12.0 ERRORS

This section provides a framework for understanding the error

handling mechanisms of version 02.01 of the LFP preprocessor. After each

execution of LFP the message NO DIAGNOSTICS is sent to the terminal and

the listbIt if there were no errors. If there were errors the message

ERRORS - MAJOR xxxxx, MINOR yyyyy, CONTROL CARDS zzzzz is printed.

LFP examines an LFP program on a line by line basis. As each line

is encountered it is first subjected to a limited syntax analysis followed

by a context analysis. Errors may be detected during either of these

analyses. It is also possible for errors to go undetected by the

preprocessor.

12.1 Syntax Errors

The fact that a statement has been ignored may, of course, cause

some context errors in later statements. For example the control phrase

"WHEN (X(I).LT.(3+4)" has a missing right parenthesis. This statement

will be ignored, causing as a minimum the following ELSE to be out of

context. The programmer should of course be aware of such effects. More

K/ is said about them in the next section.

44



12.2 Context Errors

If a statement successfully passes the syntax andlysis, it is

checked to see if it is in the appropriate context within the program. For

example, an ELSE must appear following a WHEN and nowhere else. If an ELSE

does not appear at the appropriate point or if it appears at some other

point, then a context error has occurred. A frequent source of context

errors in the initial stages of development of a program comes from

miscounting the number of FIN's needed at some point in the program.

With the exception of excess FIN's which do not match any preceding

control phrase and are ignored all context errors are treated with a uni-

form strategy. When an out-of-context source statement is encountered,

the translator generates a "STATEMENT(S) NEEDED" message. It then invents

and processes a sequence of statements which, if they had been included at

that point in the program, would have placed the original source statement

in a correct context. A message is given for each such statement

invented. The original source statement is then processed in the newly

created context.

By inventing statements the translator is not trying to patch up the

program so that it will run correctly, it is simply trying to adjust the

local context so that the original source statement and the statements

which follow will be acceptable on a context basis. As in the case of

context errors generated by ignoring a syntactically incorrect statement,

such an adjustment of context frequently causes further context errors

later on. This is called propagation of context errors.

45



12.3 Undetected Errors

LFP is ignorant of most details of FORTRAN syntax. Therefore most

FORTRAN syntax errors will be detected by the FORTRAN compiler and not by

LFP. In addition, there are two major classes of LFP errors which will be

caught by the compiler and not the preprocessor.

The first class of undetected errors involves misspelled LFP

keywords. A misspelled keyword will not be recognized by the preprocessor.

4The line on which it occurs will be assumed to be a FORTRAN statement and

will be passed unaltered to the compiler which will undoubtably object to

it. A common error, for example, is to spell UNTIL with two L's. Such
V

statements are passed to the compiler, which then produces an error

message. The fact that an intended control phrase was not recognized fre-

quently causes a later context error since a level of indentation will not

be triggered.

The second class of undetected errors involves unbalanced

parentheses. (see also note 8 in Section 10.0). When scanning a

parenthesized specification, the translator is looking for a matching

right parenthesis. If the matching parenthesis is encountered before the

end of the line the remainder of the line is scanned. If the remainder is

blank or consists of a recognizable internal procedure reference, all is

well. If neither of the above two cases hold, the remainder of the line

is assumed (without checking) to be a simple FORTRAN statement which is

passed to the Compiler. Quite often this assumption may be wrong. Thus

the statement

"WHEN (X.LT.A(I)+Z)) X 0"

46

1I



is broken down into

keyword "WHEN"
specification "(X.LT.A(I)+Z)"
FORTRAN statement ") X - 0"

Needless to say, the compiler will object to ) X 0" as a

statement.

Programmers on batch oriented systems have less difficulty with

undetected errors due to the practice of running the program through both

the preprocessor and the compiler each time a run is submitted. The com-

piler errors usually point out any errors undetected by the preprocessor.

Programmers on timesharing systems tend to have a bit more dif-

ficulty since an undetected error in one line may trigger a context error

in a much later line. Noticing the context error, the programmer does not

proceed with compilation and hence is not warned by the compiler of the

genuine cause of the error. One indication of the true source of the

error may be an indentation failure at the corresponding point in the listing.

LP ERROR LIST

END statement is missing
Translator has used up allotted space for tables
CONDITIONAL or SELECT apparently missing
ELSE necessary to match FIN
FIN necessary to match line #
no control phrase for FIN to match
only TO and END are valid at this point
WHEN to match following ELSE
procedure already defined
procedure invoked but not defined
invalid character in statement label field
recognizable statement followed by garbage
left parenthesis does not follow keyword
missing a right parenthesis
valid procedure name does not follow TO

47



j

12.4 Control Card Errors

There are 4 control card error messages.

1. BAD INCLUDE FILENAME - XXXXXXXX YYYYYYYY

This indicates that the file XXXXXXXX YYYYYYYY is not found.
The include card is ignored.

Reasons - misspelled filename or filetype
- account not shared
- specified file not blocked correctly

2. RECURSIVE INCLUDE DECKS NOT ALLOWED

An include deck cannot include itself. The include card is ignored.

3. INCLUDES NESTED LEVEL GREATER THAN 40

4. BAD CONTROL CARD

This catchall error indicates something was wrong with the
control card.

Possible reasons - misspelled control word
. forgot control word
- no argument present when one has needed
- bad argument type
. bad argument

This error results in an ignored control card.

This error message is sent to the LFP listing and also to the

terminal. The LFP line number (see 8.1.5 under LABEL control) is affixed

to the error prior to printing at the terminal.

48



13.0 PROCEDURE FOR USAGE ON Q4S - EXEC LPG

LFP at Lincoln Laboratory has been implemented on an Amdahl 470

system with the CP/CHS operating system.

The procedure which executes the LFP preprocessor is called LPG (see

Fig. 13-1), which aiso wiI optionally perform macro substitution (see

Section 15), generate a variable cross reference listing (Section 16) and

compile the user's source program.

To gain access to the various EXErS and NODULES associated with LFP,

type the following C0S command or put it in the PF*OFILE EXEC.

SHARE TOOLS

The LPG EXEC may then be executed by typing

LPG FN <FM> <(OPTIONS>

where

FN Filename of user's program with a filetype of LFP

FM Filemode of disk on which the user's program resides. The
default is the "A" disk.

The following options are available.

COMP The generated FORTRAN is compiled by the G compiler (FORTGI).

NOCOMP The generated FORTRAN is not compiled.

DISK The listing output from the preprocessor is sent to disk
(filename - FN, filetype - LFPLIST, filemode - A). The
variable cross reference listing is sent to disk (filename -

FN, filetype - XRLIST, filemode - A). These files contain
carriage control and may be printed with the CMS commands:

PRINT FN LPLIST (CC

PRINT FN XRLIST (CC

49



PR The listing output from the preprocessor and the variable
cross reference program are sent to the systems line printer.

NOPR No listing output is generated.

XREF Generate a variable cross reference table (see Section 16
and Figure 11.4).

NOXREF Do not generate a cross reference table.

MACRO Expand any macro definitions (see Section 14).

NOMACRO Do not expand macros.

SAVE The generated FORTRAN remains on the disk.

NOSAVE The generated FORTRAN is erased subsequent to processing.

The symbols < > denote that the enclosed field is optional. All

underlined options are the default. There are no abbreviations allowed

for any of the above options.

The CKS command

LPG FN

is equivalent to

LPG FN A (COMP NOMACRO NOXREF NOSAVE DISK

The options list above may be printed at a terminal by typing

LPG ?

50



SOURCE PROGRAM
IN LFP

NAME a FN LFP

LFP

SOURCE PROGRAM
IN FORTRAN WITH
MACRO CONSTRUCTS

MACR YESSOURCE PROGRAM
MACROWITH MACROS

ON EXPANDED

is YESVARIABLE CROSS1
XREF EFERENCE LISTINGJ

Is YESRELOCATABLE
COMP FRTRANBINARY

ON NAME -FN TEXT

Fig. 13-1. LPG exec structure.

51



I

14.0 PROGRAMMERS' GUIDE TO LFP

14.1 Subroutine Description

LFP consists of a large main program ( 1800 lines) and approximately

30 subroutines (4200 lines). The purpose of each subroutine is listed

below.

Name Function

BLNKUT Converts any leading zeroes
in a character string to spaces

CATNUM Convert a number to a
character string

CATSTR Concatenate 2 character

strings

CATSUB Concatenate a character

string to a character substring

CHTYP Classify a character to type

CLOSEF Write # of diagnostics to
terminal and listing and
close files.

CONTOP Controls the paging in the

LFP listing

CPYSTR Copy a character string

CPYSUB Copy a character substring

GET Processes control statements
and inline comments

GETC Get a specified character
from a character string

52



GETCH Get a specified character
from a computer word

GETL Read the next line of LP
from the mainstream or from
an included file

GETTOK Get a token

HASH Compute Hash function

INIT Initialization

LADJ Remove any blanks in a
source statement between
column 7 and the first
nonblank character

LP Hain program

LITNUM Convert a numeric character
string to binary

NEWNO Generate the next sequential
statement label

OPEN! Pile initialization

PUT Generate the FORTRAN, LP
listing and the error output

PUTC Replace a character in a
character string

PUTCH Replace a character in a
computer word

PUTL Write 1 line to the FORTRAN,
LP listing or error file

PUTNUM Put a 5 digit number at the
beginning of a character
string

STREQ Logical character string
equality compare

53



STRLT Logical character string

compare

TPAGE Generate top of page header

on the LFP listing

TRIM Truncate trailing blanks
from a character string

The named files contain the source code as listed below:

FILENAME FILETYPE CONTENTS

XFL6 LFP Main program in LP

XFL6 FORTRAN Bootstrap of XFL6 LFPp;

XFL7 LFP CATNUM

CATSUB

CHTYP

CPYSTR

CPYSUB

GETC

GETCH

HASH

PUTC

PUTCH

PUTNUM

STREQ

STILT

NEWNO

XFL7 FORTRAN Bootstrap of XFL7 LFP

54



LFPUTIL UFP BLNRUT

CLOSEF

CONTOP

GET

GETL

GETTOK

INIT

LAWJ

L ITNUH

OPENF

PUT

PUTL

TPAGE

TRIM

LFPIJTIL FORTRAN Bootstrap of LFPUTIL UIP

LFPSUB ASSEMBLE CATSUB

CATSTR

CPYSTR

CPYSUB

CATNU4

PUTNUH

STREQ

STELT

CHTYP

GETCI

55



PUTCH

NEWNO

HASH

LFPSUB2 ASSEMBLE PUTC

GETC

TRIM ASSEMBLE TRIM

Execs relating to LFP and their purposes are.

Name Purpose

MAKELFP Linkedit LFP (generate LFP WDDULE)

LFPLIST Describes LFP

LFP Invokes LFP

LPG Invokes LFP, Macro processor,
variable cross reference processor
and the Fortran G compiler.

MACRO Invokes the Macro processor

XREF Invokes the variable cross

reference processor

56



14.2 Installation of a New LIP Version.

14.2.1 Bootstrapping LFP.

To bootstrap LIP, invoke the C0S commands:

FORTGI XFL6
FORTHX LFPUTIL (OPT(3)
ASSEMBLE LFPSUB2
ASSEMBLE LFPSUB
ASSEMBLE TRIM
LOAD XFL6 LFPSUB2 TRIM LFPSUB LFPUTIL (NODUP)
GENMOD LIP

" .14.2.2 Installation parameter defaults

The user may wish to change certain default parameters in LIP

depending on the computer system characteristics. it is recommended,

however, that changes be made to the source version written in LFP--not

the Fortran version and that the equivalent Fortran of each LIP version be

archived. The following changes may be made:

14.2.2.1 Number of print lines/page

In subroutine INIT this is variable LNPPG which is currently

set to 60.

14.2.2.2 Number of columns/page (width)

In Subroutine INIT this is variable LWIDTH which is

currently set to 110. When subroutine GET processes a faulty WIDTH control

statement LWIDTH is set to 110.

14.2.2.3 Default Heading

Subroutine INIT contains a data statement for the variable

HDRDEF which defines the default heading.

57



14.2.2.4 LFP Version Number

Subroutine TPAGE contains a data statement for the variable

VERSN to define the version number.

14.2.2.5 Default Control Character

Subroutine INIT defines the default control character. To

change the default control character to an asterisk add the following

code.

INTEGER STAR

STAR-92 ; HEX 5C

Replace the 2 lines

4CALL PUTC (1, CNTRCH, PCNTC)
SVCNTC-PCNTC

with

CALL PUTC (1, CNTRCH, STAR)
SVCNTC-STAR

When subroutine GET processes a faulty CONTROL card, the percent sign

is restored as a control character.

14.2.2.6 Default Statement Labelling/Counting

In subroutine INIT variable IBNMET controls the statement

counting.

4 IBMMET-O number all generated FORTRAN statements sequentially

IBNMET-l number all generated FORTRAN statements sequentially
except comments or continuation records.

Variable STNUML controls the line number at the left of the listing.

STNUKL-O Use the LFP line number (sequential from record to
record)

STNUML-l Use the FORTRAN statement number as determined by IBMMET

58



Variable STLABR controls the line number at the left of the listing:

STLABR-O Use LFP Line number (5 columns)

STLABR-l Use line tags (col 73-80) of input source record (8
columns)

STLABR-2 blank field

Subroutine GET redefines these fields if a faulty LABEL control sta-

tement is processed.

14.2.2.7 I/0 Units

The I/0 units are defined at the end of subroutine INIT. The unit

numbers referenced by the FILEDEF statements in the exec LFP would also

have to change.

14.2.3 Comment Delimiter

The comment delimiter is defined in subroutine INIT by the statement

CNTCH-SCLN

where SCLN is defined to be 94 Dec or 5E Hex.

When subroutine GET processes a faulty ZCOMMENT control statement,

the semicolon is restored as the nomment delimiter.

59



15.0 MACRO PROCESSOR

15.1 Description

The MACRO Processor, as described in chapter 8 of Software Tools (21

by Kernighan and Plauger, has been implemented on the Amdahl 470. This

section briefly describes the function of the MACRO processor.

Macros are used to extend an existing language; tokens (alphanumeric

character strings) may be defined and the subsequent usage of the token

results in the replacement of the token by the macro definition.

The format of the macro definition for simple substitution is:

DEFINE(TOKEN,DEFINITION)

where DEFINE is a keyword which starts in column 1. There must be no

imbedded blanks internal to DEFINE and no blanks between DEFINE and the

left parenthesis.

Tokens must be alphanumeric (A-Z, 0-9, $) and contain at least 1

character. Examples of legitimate tokens are:

A ALPHABET 8DOL $NUM 5

$ $Al $5 VERYVERYLONGTOKEN

An example of a macro definition is:

DEFINE(PI,3.145159265)

The macro reference for "PI" in the following statement:

CIRCUM - 2.0*PI*RADIUS

results in

CIRCUM - 2.0*3.14159265*RADIUS

60



Another example of a macro definition is:

DEFINE(RANGECELLS, 50)

DEFINE(AZIMUTHCELLS, 30)

The macro references for RANGECELLS and AZIMUTHCELLS in the state-

ment

INTEGER*4 AMPTUD(RANGECELLS,AZINUTHCELLS)

generates the code

INTEGER*4 AMPTUD(0,30)

Macros may also have arguments; the format of this type of macro

definition is:

DEFINE(TOKENREPLACEMENT($l,$2$3, ...))

An example macro definition with arguments is:

DEFINE(ADD, $l+$2)

The reference to "ADD" in the statement

C = ADD(A,B)

results in

C = +B

Macro ignores excess arguments during substitution, however, if an

argument is not present the field $N is used.

'* Special care must be taken when the replacement string contains a

macro reference, e.g., suppose a macro definition has been written for "A".

DEFINE(A, B)

61

.~~ ~ - - - - -- --



and that later on the token "A" is to be replaced by the literal "C. The

macro definition

DEFINE (A,C)

would result in all occurrences of A and B to be replaced by the literal

"C".

To prevent this from happening MACRO allows escape characters; a

left and right bracket enclosing a token will result in the token being

copied to the Macro definition table without any substitutions.

Thus to properly redefine the token "A" by the string "C" the defi-

nition should be.

DEFINE(fA],C)

Macro also contains the built in functions, INCR (token

incrementing), SUBSTR (token substring) and IFELSE (conditional code

generation). The reader is referred to Chap. 8 of Ref. 2 for an explana-

tion.

Sample macro definitions and references are listed in Figure 15.1.

The results after being processed by MACRO are listed in Figure 15.2.

62



FILE: lITEST INPUT Al F so 54 6 2/18/81

*CASE 1- - -- -PAGE 265
DEFINE(SKIPBL,WIILE($1($2) B LANK 1 $1($2) -TAB) $2 -$2 +W)

SICIPBL(S)
SKIPBL(S, I)
SKIPBLCI,J,K)

*CASE 2 ----- ---- PAGE 267
DEFINE(Y,X)
DEFINZ(BUMP, $1-$1+1)

BUNP(X)
BUMP(Y)

*CASJE 3 -------- -PAGE 268
DEFINE(D, [DEFINE($,$2)J)
D(A,B)

A
*CASE 4 PAGE 274
DEFINS(XX,C$13)

XX(+)
XX(-)
11(4.,-)

*CASE 5 PAGE 274
DEFINE(PROC,[INTEGER FUNCTION $1 $2 DEFIN3(PROCNMN,$1)j)

PROC(EQUAL, (5TR1,STR.2))
*CASE 6 -PAGE 276
DEFINZ(HAXCARD,80)
DEFINE (XAXLINE, IINCR(NAXCARD) I)

MAXCARD
MAXLINE

*CS 7 -P--------- AGE 276
DEFINE(STUG,THIS IS A SANPLESTRING)

STING
SUBSTR(STRNG, 1,16)
SUBSTR(STING,1)
SUBSTR(STRNG, 4, 8)
SUBSTR(fSUBSTR(STUNG,11,6)j ,2.3)
SUBSTR(SUISTR(ST&NG, 11,6) ,2,3)

*CASE 8 PAGE 276
DEFINE(COMPABE,IFELSE($l,$2,YES,NO)])

COMPABE(A, 33)
DEFINE(CC,DD)

COMPARE(CC,DD)
*CASE 9 -- ------- PA E260
DEFINE(LU,(IFELSE($,,O,[INCR(LN(SJISTR($1,2)))I))

LEN(TEST)
DEFINE(SAN, SANPLE STRING)

LEN( SAM)
*CASZ 10 PAG 280
*NO0TE (LEN) IS DEFINED IN CASE 9
DEFINE(STRING, (INTEGER $1(LEN(SUSTR($2,2)))
STR($1,SUBSTR($2,2),O) DATA $1(LEN(SUBSTR($2,2)))/ZOS/j)

DATA $1(INCR($3)))/[LETISUBSTR($2,1,1)/
DEFINE(STR, (IFELSE($2,",,
CSTR($1,SUDSTP.($2,2),INCR($3))I))

STRING(NAME, "TEXT")

Fig. 15-1. MACRO processor test examples.

63



FILE: MTEST OUTPUT Al F 80 41 5 2/18/81

*CASE 1 ---------------- PAGE 265

WHILE(S($2) - LANK S($2) - TAB) $2 -$2 +1
WHILE(S(I) - LANK I S(I) - TAB) I -1 +1
WHILE(I(J) - BLANK I(J) - TAB) J -J +1

*CASE 2 ------------ PAGE 267

X-X+1
X,,X+l

*CASE 3 ------------ PAGE 268

B
*CASE 4 ------------ -- PAGE 274

C+B
C-B
C+B
CB
C*B

*CASE 5 ---- ------ PAGE 274

INTEGER FUNCTION EQUAL (STRl,STR2)
*CASE 6 ----------------------- PAGE 276

80
81

*CASE 7 ------------ PAGE 276

THIS IS B SAMPLESTRING
THIS IS B SAMPLE
THIS IS B SAMPLESTRING
S IS B S
UBS
AMP

*CASE 8 ---------- --- PAGE 276

NO
YES

*CASE 9 ------------ PAGE 280
4
13

*CASE 10 ------ ..--------- PAGE 280
*NOTE LEN IS DEFINED IN CASE 9

INTEGER NAHE(5)
DATA NAME(1)/LETT/
DATA NAHE(2)/LETE/
DATA NAME(3)/L.TX/
DATA NAME(4)/LETT/
DATA NAME(5)/EOS/

Fig. 15-2. Results of MACRO processor test examples.

64



15.2 Procedure for Using MACRO on CS

The MACRO Processor on the Amdahl 470 is located on the TOOLS

account. To invoke MACRO, type the following 04S commands

SHARE TOOLS

MACRO F1 1 TI Ft141 FN2 FT2 12

where

(FNi, FT1, F11) is the filename, filetype and filemode of the input
file. MACRO expects as input a fixed blocked file with a record
length of 80 bytes.

(FN2, FT2, 1M2) is the filename, filetype and filemode of the output
file.

The MACRO processor places on the terminal stack two parameters,

&LENI and &LHN2. This results in columns I through &LEN1 being processed

in the file F1 FT1 F1. The output file will only contain characters in

columns 1 through &LUN2.

65



16.0 VARIABLE CROSS REFERENCE PROCESSOR - XREF

XREF is a variable cross reference processor for FORTRAN programs

which is a major extension to the INDEX processor originally developed by

H. N. Nurphy.

Output from XREF includes an optional source listing, an alphabeti-

cal list of all symbols, a usage code which describes the symbol type and

a list of statement numbers where the particular symbol was referenced.

Figure 16-1 lists all cross reference usage codes. See Fig. 11-4 for

sample output from XREF.

The XIEF processor version 02.02 (XREF EXEC AND NODULE) are located

on the account TOOLS. To use IREF, type the following CS commands:

SHARE TOOLS

XREF FN <FN> <(OPTIONS>

where:

FN The filename of the file to be cross referenced with
a filetype of FORTRAN.

FN Filemode of disk on which the file is resident. The
default is the "A" disk.

The following options are available:

DISK The printable output is written on the "A" disk with
a filename - FN, filetype - XRLIST. The file may be
printed with the CS command:

PRINT FN MRLIST (CC

PR The output is sent to the systems line printer4

NOPI No printer output is generated

W-XXX The listing width in columns is set to XXX. The
default is 100 columns.

6

,, 66

4



K

L-YY The number of print lines/page is set to rff. The
default value of L Is 60 lines.

S The FORTRAN source is listed along with the cross
reference table.

NS The FORTRAN source listing is not generated.

XIR? will process ANSI FORTRAN statements but does have the

following limitations:

1. Blank lines are not permitted (LFP removes them).

2. The first source statement should be either PROGRAM, FUNCTION OR
SUBROUTINE. If the program statement is missing (as it should
be for the Amdahl 470) the name MAIN Is assigned.

67



Internal Usage
code code Variable Usage

1 Blank line - ignore
2 - Value changed by assignment statement
3 * Line on which statement number is defined
4 AG Subroutine Argument
5 CO COMMON statement

* 6 CX COMPLEX type statement
* 7 DA DATA statement

8 DI DIMENSION statement
9 DB DOUBLE PRECISION statement

10 EQ EQUIVALENCE statement
11 EX EXTERNAL ENTRY name
12 IN INTEGER specification statement
13 LG LOGICAL specification statement
14 H NANELIST specification statement
15 PR PRINT statement
16 PU PUNCH statement
17 RD READ statement
18 RL REAL specification statement
19 WR WRITE specification statement
20 DO DO Loop limit variable
21 CN COMMON block name
22 RE RETURN statement
23 ST STOP statement
24 SN Subroutine call
25 PA PAUSE statement
26 ID DO Loop Index variable
27 EN END statement

Fig. 16-1. Cross reference symbol codes.

68



ACKNOWLEDGENTS

LFP (Lincoln Fortran Preprocessor) is a major extension to the FLECS
preprocessor which was originally developed by Terry Beyer at the
University of Oregon.

We would like to thank Terry Beyer for his permission to useselected sections of the FLECS User Manual (notably sections 1, 2, 4, 5,' 6 and 7) in the preparation of this report.

We would like to thank Paula Rygiel and Pam O'Connor for all the
time that was spent in the preparation of the original report and thanks
to Pam and Michelle Dalpe' for the work on this revised edition.

Bibliography

[1] Beyer, T., Flecs Users Manual (University of Oregon Edition)

Contains a concise description of the Flecs extension of
Fortran and of the details necessary to running a Flecs program
on the PDP-1O or the IBM S/360 at Oregon.

(2] Kernighan, B. W. and Plauger, P. J., Software Tools Addison-Wesley
Publishing Company, Reading, Mass (197).

69



APPENDIX A -Control Structure SWumary Sheet

IF (C) S sUS~ $, IJ)sg

ELS S S,

FALSEE

MITIUWL MLCI (C)
*(40 SA (CA) ;j

52() ,i (es) $i

(4) Sm mUNS--CO
... FIN ...FIN

su

Tw~aWM EXI sTAIDeN mm
w Till PUS? TO sTAYUu.

A CATCNAIL CONDITI OR
me mion CITruI.

AM SMWC STAT1111t.

- STATMINT(S)

Z 0 * S PIPICAnUU

REPET hNIL (C) S m EPTIlLE (1c) S INIL (.C) 5 wE (4c) s

FALSE TWAM

TIN ALS 
FALSE W

70



K APPENDIX B -Control Statement Sumary Sheet
Section

ZCben~t x ..

Defies the comment delimiter Character K. Defeult to

xCongrol S .1.2

Deftie the control character 1. Default is I

2DB 6.1.3

Douable spae the LI? Listing

Uleedieg CNAATI STI111 6.1.4

Defie the heeding CNARACTIM 521111 to So at the top
of ech page of the UP? listing.

ZUnclude FlLAXhJI FtLBTlPS 0.2.1

Include the contents of the file - FILSM FZLKTI in
the esoarce file. The fIlt~oye east be WP?.

ZIUCZzP N 6.2.2

Controls the inclusion of a file as the INCLUDE card.
if 9 is 0 the file is eot Included. if 9 is 1 the
file Is Included. Default - 1.

SLASU III 8.1.3

1 0 Hbdcemp VOBTEAN line* numbering

1 Amndahl 7012148 Line numbering (defacult)

I UP? Ine nmbers at left of listing
110 121*5A line ambers at left of Listing (default)

Z 0 L? Line numbers at right of Uisting
I Line tags at right of Listing (def cult)
2 blanks

ZLADJ 6.1.6

Left adjust the source to columi 7, remoing blak@.

%s~ie N 8.1.7

Print 9 lines per pae. Default - 60.

M~ist 6.1.6

print IF? listing. Default.

ZUOLedj3 6.1.9

Do not left adjust source to column 7 (defeult).

MuD~st 6.1.10

Turn off LIPP listing.

Siege N 6.1.11

Eject a pae if NPC or N315 missing.
Eject a pae if there ea loe thee N lines left on a pae.

U6S 6.1.12

Single space LIP listing (defacult).

x" 6. 1.10

Triple space 1.11 listing.

SVidth N 6.1.14

Width of UIP output listing in characters.
Defealt -110

71



UNCLASSIFIED

SECUR1ITY CLASSIFICATION OF THIS PAGE (N'WAnweaOt E.Wrod,

REPORT DOCUMENTATION PAGE EI MPLETING FORM
1. -EPD-T 8-o8Uln 1LSOVTFISSION N3. RECIPIENT CATALOG UIIER

ESD-TR-82-083 ifI A 607_ _ _ __ _ _ _

4. TITLE (and .Subitie) 1 5. TYPE OF REPORT PEIOD COVERED

LFP User's Manual (Lincoln Fortran Preprocessor) Technical Report

Version 02.01 for IBM/Amdahl Systems I. PERFORII ON. REPORT NUNSER

Technical Report 623
7. AUTHOR(s) U. CONTRACT ON DRAT 6 UHEEK(s)

James H. Cosgrove and Edward T. Bayliss F19628-80-C-0002

SPERFORMING ORGANIZATION NAME AND ADDRESS 1. PROGAM ELEMENT. PROJECT. TASK
Lincoln Laboratory, M.I.T. AREA A WOR UNIT lUMBERS

P.O. Box 73 Program Element No. 62738A
Lexington, MA 02173-0073

11. CONTROLUING OFFICE NAME AND ADDRESS 12. RMEPOT DATE

U.S. Army Electronics Command 1 September 1982
Ft. Monmouth, NJ 07703 13. UIR OF PAGES

92
14. MONITORINS AGENCY MAME & ADDOSS (ifdifferent from Controlling OffivO IS. SECUITY CLASS. (oft repor)

Electronic Systems Division Unclassified

Hanscom AFB, MA 01731 Ia. OECLASSIFICATION 0MONRAMII SCHEDULE

1l. DISTRIBUTION STATEMENT (of this ReporO

Approved for public release; distribution unlimited.

17. DINTRIUUTION STATEMENT (of the ab~ei entered in Black ,0. If different fram Report)

IL SUPPIEMENTARY NOTES

None

1. MEY nODIS (ConIw, on reerse sa If nereary and Idesdfy by block number)

structured FORTRAN LFP internal procedure

26. AISIMET (Continu, on reverse side if nee-abry and dntify by bloc-k number)

LFP (Lincoln Fortran Preprocessor) pro'.ides top-down control structures to FORTRAN and
generates a self-documenting listing. LFP is compatible with existing FORTRAN and also permits

an internal procedure capability.

FOM00 1 1473 EomON OF I NOV I IS OOLETE UNCLASSIFIED
I Jim 73 SECURITY CLASSIFICATION OF THIS PAGE (Wt'n Dat IK arem


